# 🔥 Kubernetes Resource Usage Report 2026/01/06 ## 💾 TOP 10 MEMORY CONSUMERS | Rank | Namespace | Pod Name | Memory | |------|-----------|----------|--------| | 1 | jenkins | jenkins-6fc54b66d5-dg6h9 | **1361Mi** 🔥 | | 2 | monitoring | prometheus-k8s-monitoring-kube-promet-prometheus-0 | **1011Mi** | | 3 | longhorn-system | instance-manager-d615ed1c3a0e53d6a8ab21533bc5d628 | **600Mi** | | 4 | longhorn-system | instance-manager-30e7dd49f715bfdb9ae030c0e2b45bbf | **599Mi** | | 5 | longhorn-system | instance-manager-adf5b54f2ad6e50eb3987b8dc9bd1d52 | **559Mi** | | 6 | calibre-web | calibre-web-58b6bc49fd-msmgz | **317Mi** | | 7 | monitoring | k8s-monitoring-grafana-b4c85bb7c-b4v8x | **313Mi** | | 8 | argocd | argocd-application-controller-0 | **210Mi** | | 9 | longhorn-system | longhorn-manager-sbqhd | **176Mi** | | 10 | longhorn-system | longhorn-manager-l4sj6 | **178Mi** | --- ## 🔥 TOP 10 CPU CONSUMERS | Rank | Namespace | Pod Name | CPU | |------|-----------|----------|-----| | 1 | monitoring | prometheus-k8s-monitoring-kube-promet-prometheus-0 | **199m** 🔥 | | 2 | longhorn-system | instance-manager-d615ed1c3a0e53d6a8ab21533bc5d628 | **125m** | | 3 | longhorn-system | instance-manager-30e7dd49f715bfdb9ae030c0e2b45bbf | **83m** | | 4 | longhorn-system | instance-manager-adf5b54f2ad6e50eb3987b8dc9bd1d52 | **65m** | | 5 | argocd | argocd-application-controller-0 | **38m** | | 6 | longhorn-system | longhorn-manager-sbqhd | **28m** | | 7 | longhorn-system | longhorn-manager-mgpgj | **26m** | | 8 | loki | promtail-qh9n9 | **26m** | | 9 | loki | promtail-7fl7h | **25m** | | 10 | gitea | gitea-valkey-cluster-2 | **24m** | --- ## 📊 SUMMARY BY NAMESPACE | Namespace | Pods | Total Memory | Avg Memory per Pod | |-----------|------|--------------|-------------------| | jenkins | 1 | **1361Mi** 🔥 | 1361Mi | | monitoring | 5 | **1391Mi** | 278Mi | | longhorn-system | 32 | **2577Mi** | 81Mi | | argocd | 7 | **371Mi** | 53Mi | | gitea | 4 | **167Mi** | 42Mi | | calibre-web | 1 | **317Mi** | 317Mi | | loki | 4 | **296Mi** | 74Mi | | default | 5 | **238Mi** | 48Mi | --- ## 🎯 KEY INSIGHTS ### Jenkins (Biggest Consumer!) ``` Pod: jenkins-6fc54b66d5-dg6h9 Memory: 1361Mi (1.3 GB!) CPU: 3m (low) 💡 Причина: - Jenkins хранит build history в памяти - Загружены плагины - Кэш workspace ``` ### Prometheus (Second Biggest) ``` Pod: prometheus-k8s-monitoring-kube-promet-prometheus-0 Memory: 1011Mi (1 GB) CPU: 199m (highest CPU usage!) 💡 Причина: - Хранит метрики в памяти - Time series database - Retention period ``` ### Longhorn (Distributed Storage) ``` Total Memory: ~2.5GB across 32 pods Average: 81Mi per pod 💡 Причина: - 3 instance managers (по ~600Mi каждый) - Storage management overhead - Replica data ``` --- ## ⚠️ RECOMMENDATIONS ### 1. Jenkins Memory Optimization **Current:** 1361Mi **Recommended:** Set limits ```yaml # apps/jenkins/deployment.yaml resources: limits: memory: 2Gi cpu: 1000m requests: memory: 1536Mi cpu: 500m ``` **Actions:** - Configure max build history - Clean old workspaces - Limit concurrent builds --- ### 2. Prometheus Memory Optimization **Current:** 1011Mi **Recommended:** Adjust retention ```yaml # Reduce retention period prometheus: retention: 7d # Down from 15d retentionSize: 10GB ``` --- ### 3. Longhorn Optimization **Current:** ~600Mi per instance manager **Status:** Normal for distributed storage No action needed - this is expected for Longhorn. --- ## 📈 MONITORING COMMANDS ### Watch top consumers: ```bash watch -n 5 kubectl top pods --all-namespaces --sort-by=memory ``` ### Check specific namespace: ```bash kubectl top pods -n jenkins kubectl top pods -n monitoring kubectl top pods -n longhorn-system ``` ### Check nodes: ```bash kubectl top nodes ``` ### Get detailed metrics: ```bash # Pod metrics kubectl get --raw /apis/metrics.k8s.io/v1beta1/namespaces/jenkins/pods/jenkins-6fc54b66d5-dg6h9 | jq # Node metrics kubectl get --raw /apis/metrics.k8s.io/v1beta1/nodes | jq ``` --- ## 🎯 QUICK WINS 1. ✅ **Add resource limits** to Jenkins 2. ✅ **Reduce Prometheus retention** if needed 3. ✅ **Monitor trends** in Grafana 4. ⏳ **Consider HPA** for auto-scaling 5. ⏳ **Add alerts** for high memory usage --- ## 📊 CURRENT CLUSTER CAPACITY Run `kubectl top nodes` to see: ``` NAME CPU(cores) CPU% MEMORY(bytes) MEMORY% master1 ???m ??% ????Mi ??% master2 ???m ??% ????Mi ??% master3 ???m ??% ????Mi ??% ``` --- **Jenkins is your biggest memory consumer!** 🔥 Consider adding resource limits and cleanup policies.