Update docs/gitops-cicd/11-ollama-comprehensive-enterprise-guide.md
This commit is contained in:
@@ -182,7 +182,7 @@ Self-hosted AI-инфраструктура на базе Ollama с интегр
|
||||
|
||||
### Уровень 1: User Access Layer
|
||||
|
||||
**Веб-интерфейс** на базе Gradio предоставляет удобный браузерный доступ без установки дополнительного ПО. Это основной способ взаимодействия для большинства пользователей.
|
||||
**Веб-интерфейс** на базе Open WebUI предоставляет удобный браузерный доступ без установки дополнительного ПО. Это основной способ взаимодействия для большинства пользователей.
|
||||
|
||||
**VS Code Extension** интегрирует AI-ассистента непосредственно в процесс разработки. Разработчик может задавать вопросы о коде, генерировать тесты, получать объяснения, не покидая IDE.
|
||||
|
||||
@@ -237,7 +237,7 @@ Embedding Service использует модель bge-large-en-v1.5 для с
|
||||
| **Network** | 2x 10 Gbps (bonded) | High throughput для MCP data retrieval |
|
||||
| **PSU** | 1600W 80+ Titanium | GPU power requirements |
|
||||
|
||||
**Ориентировочная стоимость:** $12,000-15,000
|
||||
|
||||
|
||||
### Выбор GPU по сценарию использования
|
||||
|
||||
@@ -261,29 +261,7 @@ Embedding Service использует модель bge-large-en-v1.5 для с
|
||||
|
||||
*с частичным offloading в RAM
|
||||
|
||||
### Распределение системной памяти (128 GB)
|
||||
|
||||
```
|
||||
16 GB → Операционная система Ubuntu Server
|
||||
8 GB → Ollama service
|
||||
32 GB → Vector Database Qdrant
|
||||
16 GB → MCP Services
|
||||
8 GB → Embedding service
|
||||
8 GB → API Gateway + мониторинг
|
||||
40 GB → Model offloading buffer
|
||||
```
|
||||
|
||||
### Распределение хранилища (2 TB NVMe)
|
||||
|
||||
```
|
||||
300 GB → AI Models
|
||||
500 GB → Vector Database
|
||||
200 GB → MCP Services cache
|
||||
100 GB → OS и приложения
|
||||
900 GB → Резерв для роста
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Выбор и оптимизация AI-моделей
|
||||
|
||||
@@ -604,33 +582,6 @@ Effective AI-ассистент строит каждое взаимодейст
|
||||
|
||||
**Relevance-based selection** - вместо отбора по времени, анализируется relevance каждого сообщения к текущему запросу через embedding similarity.
|
||||
|
||||
### Persistent storage
|
||||
|
||||
PostgreSQL хранит conversation data:
|
||||
- **sessions** table: ID, user_id, created_at, updated_at, title, status
|
||||
- **messages** table: session_id, role, content, created_at, model_used, token_count
|
||||
- JSONB columns для semi-structured metadata
|
||||
|
||||
**Indexes:**
|
||||
- (user_id, updated_at) для listing недавних сессий
|
||||
- (session_id, created_at) для получения истории
|
||||
|
||||
**Partitioning:** Monthly partitions поддерживают performance при росте данных.
|
||||
|
||||
### Конфиденциальность и retention
|
||||
|
||||
**Encryption:**
|
||||
- At rest: Database или filesystem-level encryption
|
||||
- In transit: TLS для всех коммуникаций
|
||||
|
||||
**Access controls:**
|
||||
- Пользователи видят только свои диалоги
|
||||
- RBAC для managers с audit trail
|
||||
|
||||
**Retention policies:**
|
||||
- Automated cleanup согласно policy
|
||||
- User right to deletion
|
||||
- Anonymization для analytics
|
||||
|
||||
### Search и navigation
|
||||
|
||||
@@ -652,678 +603,7 @@ PostgreSQL хранит conversation data:
|
||||
|
||||
**Sharing links** - read-only URL с expiration time и access controls.
|
||||
|
||||
### Analytics
|
||||
|
||||
**Usage metrics:**
|
||||
- Активные пользователи per day
|
||||
- Количество сессий
|
||||
- Среднее messages per session
|
||||
- Peak usage times
|
||||
|
||||
**Query patterns:**
|
||||
- Common question types
|
||||
- Frequently discussed topics
|
||||
- Typical workflows
|
||||
|
||||
**User satisfaction:**
|
||||
- Explicit ratings
|
||||
- Implicit signals (conversation length, corrections)
|
||||
|
||||
### Таблица session management
|
||||
|
||||
| Параметр | Значение | Обоснование |
|
||||
|----------|----------|-------------|
|
||||
| Max messages в window | 40 | Баланс context/performance |
|
||||
| Trigger для summarization | 30 messages | До исчерпания window |
|
||||
| Compression ratio | 5:1 | 5 messages → 1 summary |
|
||||
| Max session idle time | 24 часа | Auto-close неактивных |
|
||||
| Max concurrent sessions | 10/user | Предотвращение abuse |
|
||||
|
||||
### Таблица retention policy
|
||||
|
||||
| Тип данных | Retention | Действие | Access |
|
||||
|------------|-----------|----------|--------|
|
||||
| Active sessions | Indefinite | N/A | User only |
|
||||
| Inactive (<30d) | Indefinite | N/A | User only |
|
||||
| Old (30-90d) | Summarized | Messages→summary | User only |
|
||||
| Very old (>90d) | Archived | Cold storage | Read-only |
|
||||
| Marked deletion | 30d grace | Permanent delete | User during grace |
|
||||
|
||||
---
|
||||
|
||||
## Стратегия хранения данных
|
||||
|
||||
### Многоуровневая архитектура
|
||||
|
||||
Эффективная AI-инфраструктура требует sophisticated подхода к хранению различных типов данных с различными характеристиками и требованиями.
|
||||
|
||||
### Hot Storage: NVMe SSD RAID
|
||||
|
||||
**Primary tier** обеспечивает высокую производительность для frequently accessed данных.
|
||||
|
||||
**Содержимое:**
|
||||
- AI models (300 GB) - fast loading критичен для UX
|
||||
- Vector DB indices (200 GB) - intensive I/O для каждого query
|
||||
- Recent conversations (100 GB) - frequent access
|
||||
|
||||
**Характеристики:**
|
||||
- NVMe интерфейс: несколько GB/sec throughput
|
||||
- Latency: <100 microseconds
|
||||
- RAID 1: fault tolerance без downtime
|
||||
|
||||
### Warm Storage: SATA SSD
|
||||
|
||||
**Secondary tier** предоставляет больший объем за меньшую цену.
|
||||
|
||||
**Содержимое:**
|
||||
- Vector DB payload (300 GB)
|
||||
- Source documents (200 GB)
|
||||
- Older conversations (200 GB)
|
||||
- Daily backups (1 TB)
|
||||
|
||||
**Характеристики:**
|
||||
- SATA интерфейс: достаточная скорость
|
||||
- Cost-effective для large volumes
|
||||
- Acceptable latency для less frequent access
|
||||
|
||||
### Cold Storage: Object Storage
|
||||
|
||||
**Tertiary tier** для archival data и compliance.
|
||||
|
||||
**Содержимое:**
|
||||
- Very old sessions (500 GB)
|
||||
- Weekly backups (500 GB)
|
||||
- Long-term analytics (variable)
|
||||
|
||||
**Характеристики:**
|
||||
- S3-compatible storage
|
||||
- Dramatically lower cost
|
||||
- Retrieval latency в секундах
|
||||
|
||||
### Lifecycle Management
|
||||
|
||||
**Automated policies:**
|
||||
- Hot→Warm после месяца inactivity
|
||||
- Warm→Cold после трех месяцев
|
||||
- Deletion согласно retention policy
|
||||
- Compression older data
|
||||
|
||||
### Backup Strategy
|
||||
|
||||
**Continuous WAL archiving** в PostgreSQL для point-in-time recovery.
|
||||
|
||||
**Daily full backups:**
|
||||
- Qdrant snapshots
|
||||
- PostgreSQL dumps
|
||||
- На warm и cold tiers
|
||||
|
||||
**Weekly full backups:**
|
||||
- AI models (rarely change)
|
||||
- Configuration
|
||||
- На cold tier
|
||||
|
||||
**Testing:** Automated restoration tests в test environment.
|
||||
|
||||
### Таблица Storage Tier Allocation
|
||||
|
||||
| Данные | Volume | Tier | Access pattern | Latency | Retention |
|
||||
|--------|--------|------|----------------|---------|-----------|
|
||||
| AI models | 300 GB | Hot | На load | <1s | Indefinite |
|
||||
| Vector indices | 200 GB | Hot | На query | <100ms | Indefinite |
|
||||
| Vector payload | 300 GB | Warm | На retrieval | <500ms | Indefinite |
|
||||
| Recent sessions | 100 GB | Hot | Very frequent | <50ms | Indefinite |
|
||||
| Old sessions | 200 GB | Warm | Occasional | <1s | До deletion |
|
||||
| Archived | 500 GB | Cold | Rare | <10s | До deletion |
|
||||
| Source docs | 200 GB | Warm | На reindex | <2s | Indefinite |
|
||||
|
||||
### Таблица Backup Strategy
|
||||
|
||||
| Тип | Frequency | Retention | Location | RTO | RPO |
|
||||
|-----|-----------|-----------|----------|-----|-----|
|
||||
| PostgreSQL WAL | Continuous | 7d | Object | 1h | 5min |
|
||||
| PostgreSQL full | Daily | 30d | Warm+Cold | 2h | 24h |
|
||||
| Qdrant snapshot | Daily | 30d | Warm | 3h | 24h |
|
||||
| Qdrant snapshot | Weekly | 90d | Cold | 6h | 7d |
|
||||
| AI models | Weekly | Indefinite | Cold | 1h | 7d |
|
||||
| Configuration | On change | Indefinite | Git | 30min | Last commit |
|
||||
|
||||
---
|
||||
|
||||
## Безопасность и Compliance
|
||||
|
||||
### Network Isolation
|
||||
|
||||
**Firewall rules** implement least privilege:
|
||||
|
||||
**Inbound:**
|
||||
- 443 (HTTPS) из Corporate VPN
|
||||
- 11434 (Ollama) только с MCP Orchestrator
|
||||
- 6333 (Qdrant) только с Ollama server
|
||||
|
||||
**Outbound:**
|
||||
- 3000 (Gitea API)
|
||||
- 2377 (Docker Swarm API)
|
||||
- 6443 (Kubernetes API)
|
||||
- 3100 (Loki API)
|
||||
- Default: DENY ALL
|
||||
|
||||
**IDS/IPS** мониторит traffic для suspicious patterns, используя ML-based anomaly detection.
|
||||
|
||||
### Authentication и Authorization
|
||||
|
||||
**LDAP integration** для enterprises:
|
||||
- Аутентификация с corporate credentials
|
||||
- Group membership определяет access levels
|
||||
- Centralized password management
|
||||
|
||||
**OIDC** для modern cloud-native auth:
|
||||
- Integration с Okta, Auth0, Azure AD
|
||||
- SSO capabilities
|
||||
- MFA support
|
||||
|
||||
**RBAC (Role-Based Access Control):**
|
||||
- **devops role**: query:*, mcp:*:read
|
||||
- **developer role**: query:code, mcp:gitea:read
|
||||
- **viewer role**: query:docs
|
||||
|
||||
### Secrets Masking
|
||||
|
||||
**Automated patterns:**
|
||||
```
|
||||
password:\s*"?([^"\s]+)"? → password: "[REDACTED]"
|
||||
token:\s*"?([^"\s]+)"? → token: "[REDACTED]"
|
||||
\b\d{16}\b → [CARD_REDACTED]
|
||||
\b\d{3}-\d{2}-\d{4}\b → [SSN_REDACTED]
|
||||
```
|
||||
|
||||
**Application в:**
|
||||
- MCP server responses
|
||||
- Логах системы
|
||||
- Conversation histories
|
||||
- Export files
|
||||
|
||||
### Audit Logging
|
||||
|
||||
**Все операции логируются:**
|
||||
```
|
||||
Timestamp | User | Action | Details | Result
|
||||
2026-01-12 14:23:45 | user@company.com | query | model=qwen2.5-coder | success
|
||||
2026-01-12 14:23:46 | user@company.com | mcp_k8s | get_pods | success
|
||||
```
|
||||
|
||||
**Retention:** 1 год для compliance.
|
||||
|
||||
**Analysis:** Регулярный review для suspicious patterns.
|
||||
|
||||
### Data Protection
|
||||
|
||||
**Encryption at rest:**
|
||||
- Database encryption (PostgreSQL TDE)
|
||||
- Filesystem encryption (LUKS)
|
||||
- Vector DB encryption
|
||||
|
||||
**Encryption in transit:**
|
||||
- TLS 1.3 для всех connections
|
||||
- Certificate management через Let's Encrypt или internal CA
|
||||
|
||||
**DLP (Data Loss Prevention):**
|
||||
- Content inspection на egress
|
||||
- Block передачи sensitive patterns
|
||||
- Alert на suspicious exports
|
||||
|
||||
### Compliance
|
||||
|
||||
**PCI DSS:** Данные не покидают secured network.
|
||||
|
||||
**GDPR:**
|
||||
- Right to deletion implemented
|
||||
- Data minimization principles
|
||||
- Consent management
|
||||
- Data portability через exports
|
||||
|
||||
**SOC 2:**
|
||||
- Comprehensive audit trails
|
||||
- Access controls documented
|
||||
- Regular security reviews
|
||||
- Incident response procedures
|
||||
|
||||
### Security Monitoring
|
||||
|
||||
**Metrics tracked:**
|
||||
- Failed authentication attempts
|
||||
- Unusual access patterns
|
||||
- MCP server errors
|
||||
- Rate limit hits
|
||||
- Secrets exposure attempts
|
||||
|
||||
**Alerting:**
|
||||
- Slack integration для security team
|
||||
- PagerDuty для critical alerts
|
||||
- Email для regular notifications
|
||||
|
||||
### Таблица Security Controls
|
||||
|
||||
| Контроль | Тип | Уровень | Мониторинг |
|
||||
|----------|-----|---------|------------|
|
||||
| Network firewall | Preventive | Infrastructure | 24/7 |
|
||||
| TLS encryption | Preventive | Transport | Certificate monitoring |
|
||||
| LDAP auth | Detective | Application | Login success rate |
|
||||
| RBAC | Preventive | Application | Access patterns |
|
||||
| Secrets masking | Preventive | Application | Exposure attempts |
|
||||
| Audit logging | Detective | All layers | Log analysis |
|
||||
| IDS/IPS | Detective/Preventive | Network | Alert monitoring |
|
||||
| Backup encryption | Preventive | Storage | Backup verification |
|
||||
|
||||
---
|
||||
|
||||
## Мониторинг и Observability
|
||||
|
||||
### Key Metrics
|
||||
|
||||
**GPU Metrics:**
|
||||
- nvidia_gpu_temperature_celsius
|
||||
- nvidia_gpu_utilization_percent
|
||||
- nvidia_gpu_memory_used_bytes
|
||||
- nvidia_gpu_power_usage_watts
|
||||
|
||||
**Ollama Metrics:**
|
||||
- ollama_requests_total
|
||||
- ollama_request_duration_seconds
|
||||
- ollama_tokens_per_second
|
||||
- ollama_active_models
|
||||
|
||||
**MCP Metrics:**
|
||||
- mcp_requests_total{service="gitea"}
|
||||
- mcp_request_duration_seconds
|
||||
- mcp_errors_total
|
||||
- mcp_cache_hit_ratio
|
||||
|
||||
**RAG Metrics:**
|
||||
- qdrant_collection_size
|
||||
- qdrant_query_duration_seconds
|
||||
- embedding_generation_duration
|
||||
- reranking_duration
|
||||
|
||||
**Storage Metrics:**
|
||||
- disk_usage_percent{tier="hot"}
|
||||
- disk_iops{tier="hot"}
|
||||
- disk_throughput_bytes
|
||||
- backup_last_success_timestamp
|
||||
|
||||
### Grafana Dashboards
|
||||
|
||||
**Dashboard 1: Ollama Overview**
|
||||
- GPU utilization timeline
|
||||
- Request rate по моделям
|
||||
- Response time percentiles (p50, p95, p99)
|
||||
- Active users count
|
||||
- Token generation rate
|
||||
|
||||
**Dashboard 2: MCP Services**
|
||||
- Request distribution pie chart
|
||||
- Success/error rates по сервисам
|
||||
- Latency heatmap
|
||||
- Cache hit rates
|
||||
- Top users by requests
|
||||
|
||||
**Dashboard 3: Vector DB**
|
||||
- Collection sizes growth
|
||||
- Query performance trends
|
||||
- Cache effectiveness
|
||||
- Index rebuild status
|
||||
|
||||
**Dashboard 4: User Experience**
|
||||
- Average response time
|
||||
- User satisfaction ratings
|
||||
- Session duration distribution
|
||||
- Popular query types
|
||||
- Error rate по типам
|
||||
|
||||
**Dashboard 5: Infrastructure Health**
|
||||
- CPU/RAM utilization
|
||||
- Disk I/O patterns
|
||||
- Network throughput
|
||||
- Temperature monitoring
|
||||
- Power consumption
|
||||
|
||||
### Alerting Strategy
|
||||
|
||||
**Critical Alerts (PagerDuty):**
|
||||
- Ollama service down
|
||||
- GPU temperature >85°C
|
||||
- Disk usage >90%
|
||||
- Authentication system unavailable
|
||||
- Backup failed
|
||||
|
||||
**Warning Alerts (Slack):**
|
||||
- High error rate (>5%)
|
||||
- Slow response times (p95 >10s)
|
||||
- GPU utilization consistently >95%
|
||||
- MCP service degraded
|
||||
- Cache miss rate >50%
|
||||
|
||||
**Info Alerts (Email):**
|
||||
- Scheduled maintenance reminders
|
||||
- Usage statistics weekly digest
|
||||
- Capacity planning recommendations
|
||||
|
||||
### Logging Strategy
|
||||
|
||||
**Structured logging** JSON format для всех компонентов:
|
||||
```json
|
||||
{
|
||||
"timestamp": "2026-01-12T14:23:45Z",
|
||||
"level": "INFO",
|
||||
"service": "ollama",
|
||||
"message": "Model loaded",
|
||||
"model": "qwen2.5-coder:32b",
|
||||
"load_time_ms": 2341
|
||||
}
|
||||
```
|
||||
|
||||
**Log aggregation** через Loki:
|
||||
- Central collection
|
||||
- Retention: 30 days hot, 90 days warm
|
||||
- Full-text search capability
|
||||
- Correlation with metrics
|
||||
|
||||
**Log levels:**
|
||||
- ERROR: Failures requiring attention
|
||||
- WARN: Degraded performance
|
||||
- INFO: Normal operations
|
||||
- DEBUG: Detailed troubleshooting (disabled in production)
|
||||
|
||||
### Distributed Tracing
|
||||
|
||||
OpenTelemetry для end-to-end request tracing:
|
||||
- User request → API Gateway
|
||||
- Gateway → Ollama
|
||||
- Ollama → MCP services
|
||||
- MCP → Backend systems
|
||||
- RAG → Vector DB
|
||||
|
||||
Jaeger UI для visualizing traces, identifying bottlenecks.
|
||||
|
||||
### Health Checks
|
||||
|
||||
**Liveness probes:**
|
||||
- Ollama /health endpoint
|
||||
- Qdrant readiness
|
||||
- PostgreSQL connectivity
|
||||
- MCP services status
|
||||
|
||||
**Readiness probes:**
|
||||
- Models loaded
|
||||
- Indices ready
|
||||
- Database connections available
|
||||
|
||||
**Периодичность:** Every 30 seconds.
|
||||
|
||||
### Capacity Planning
|
||||
|
||||
**Trend analysis:**
|
||||
- Usage growth rate
|
||||
- Storage consumption trends
|
||||
- Peak load patterns
|
||||
- Resource saturation points
|
||||
|
||||
**Forecasting:**
|
||||
- When additional GPU needed
|
||||
- Storage expansion timeline
|
||||
- Network bandwidth requirements
|
||||
- Team growth accommodation
|
||||
|
||||
### Таблица мониторинга
|
||||
|
||||
| Компонент | Метрика | Threshold Warning | Threshold Critical | Action |
|
||||
|-----------|---------|-------------------|-------------------|--------|
|
||||
| GPU | Temperature | >75°C | >85°C | Check cooling |
|
||||
| GPU | Utilization | >85% | >95% | Consider scaling |
|
||||
| GPU | Memory | >20GB | >23GB | Model optimization |
|
||||
| Storage | Disk usage | >75% | >90% | Cleanup/expansion |
|
||||
| Storage | IOPS | >80% max | >95% max | Storage upgrade |
|
||||
| API | Error rate | >2% | >5% | Investigate logs |
|
||||
| API | Latency p95 | >5s | >10s | Performance tuning |
|
||||
| RAG | Query time | >1s | >2s | Index optimization |
|
||||
|
||||
---
|
||||
|
||||
## Экономическое обоснование
|
||||
|
||||
### Капитальные затраты (CapEx)
|
||||
|
||||
| Компонент | Стоимость |
|
||||
|-----------|-----------|
|
||||
| GPU (RTX 4090 24GB) | $1,600-2,000 |
|
||||
| CPU (Ryzen 9 7950X) | $500-600 |
|
||||
| RAM (128GB DDR5 ECC) | $600-800 |
|
||||
| Storage (NVMe + SATA) | $800-1,000 |
|
||||
| Motherboard (High-end) | $400-500 |
|
||||
| PSU (1600W Titanium) | $300-400 |
|
||||
| Case/Cooling | $300-400 |
|
||||
| Network (2x 10GbE) | $200-300 |
|
||||
| **TOTAL CapEx** | **$12,000-15,000** |
|
||||
|
||||
### Операционные затраты (OpEx) годовые
|
||||
|
||||
| Статья | Стоимость |
|
||||
|--------|-----------|
|
||||
| Электричество (~500W 24/7) | $650/год |
|
||||
| Охлаждение | $200/год |
|
||||
| Maintenance | $500/год |
|
||||
| Training/Documentation | $2,000/год |
|
||||
| **TOTAL OpEx** | **$3,350/год** |
|
||||
|
||||
### Софт (бесплатно)
|
||||
|
||||
Все программные компоненты open source:
|
||||
- Ubuntu Server: FREE
|
||||
- Ollama: FREE
|
||||
- Qdrant: FREE
|
||||
- PostgreSQL: FREE
|
||||
- Все MCP services: FREE (self-developed)
|
||||
- Prometheus/Grafana: FREE
|
||||
|
||||
### ROI Analysis
|
||||
|
||||
**Экономия времени команды 10 инженеров:**
|
||||
|
||||
| Активность | Сэкономлено | Часов/год | Ценность ($100/час) |
|
||||
|------------|-------------|-----------|---------------------|
|
||||
| Поиск информации | 40% | 832 часов | $83,200 |
|
||||
| Написание документации | 50% | 520 часов | $52,000 |
|
||||
| Troubleshooting | 30% | 624 часов | $62,400 |
|
||||
| Code review | 20% | 208 часов | $20,800 |
|
||||
| **TOTAL** | | **2,184 часов** | **$218,400/год** |
|
||||
|
||||
**ROI расчет:**
|
||||
```
|
||||
Total Investment: $15,000 (CapEx) + $3,350 (OpEx год 1) = $18,350
|
||||
Annual Benefit: $218,400
|
||||
Payback Period: 18,350 / 218,400 = 0.08 года = 1 месяц
|
||||
3-Year ROI: (3 × $218,400 - $18,350 - 2 × $3,350) / $18,350 = 3,458%
|
||||
```
|
||||
|
||||
### Сравнение с облачными AI API
|
||||
|
||||
**OpenAI GPT-4 pricing:**
|
||||
- Prompt: $0.03 per 1K tokens
|
||||
- Completion: $0.06 per 1K tokens
|
||||
|
||||
**Типичный query:**
|
||||
- 2K tokens prompt (context + question)
|
||||
- 1K tokens completion
|
||||
- Cost per query: $0.12
|
||||
|
||||
**Monthly cost для 10 пользователей:**
|
||||
- 50 queries/day per user = 500 queries/day
|
||||
- 500 × 30 days = 15,000 queries/month
|
||||
- 15,000 × $0.12 = $1,800/month = $21,600/year
|
||||
|
||||
**Self-hosted advantages:**
|
||||
- Lower cost after year 1
|
||||
- Complete data control
|
||||
- No API rate limits
|
||||
- Customizable models
|
||||
- No vendor lock-in
|
||||
|
||||
### Таблица TCO (Total Cost of Ownership) 3 года
|
||||
|
||||
| Год | CapEx | OpEx | Total Annual | Cumulative | Cloud Alternative |
|
||||
|-----|-------|------|--------------|------------|-------------------|
|
||||
| 1 | $15,000 | $3,350 | $18,350 | $18,350 | $21,600 |
|
||||
| 2 | $0 | $3,350 | $3,350 | $21,700 | $43,200 |
|
||||
| 3 | $0 | $3,350 | $3,350 | $25,050 | $64,800 |
|
||||
| **Savings** | | | | | **$39,750** |
|
||||
|
||||
---
|
||||
|
||||
## Deployment Roadmap
|
||||
|
||||
### Phase 1: Foundation (Weeks 1-2)
|
||||
|
||||
**Infrastructure setup:**
|
||||
- Server assembly и OS installation
|
||||
- Network configuration
|
||||
- GPU drivers installation
|
||||
- Docker setup
|
||||
|
||||
**Deliverables:**
|
||||
- Working server с GPU functional
|
||||
- Network connectivity verified
|
||||
- Monitoring baseline established
|
||||
|
||||
### Phase 2: Core Services (Weeks 3-4)
|
||||
|
||||
**AI infrastructure:**
|
||||
- Ollama installation
|
||||
- Models download и testing
|
||||
- Basic API Gateway setup
|
||||
|
||||
**Deliverables:**
|
||||
- Models responding to queries
|
||||
- Simple web interface functional
|
||||
- Performance benchmarks completed
|
||||
|
||||
### Phase 3: MCP Integration (Weeks 5-6)
|
||||
|
||||
**MCP services deployment:**
|
||||
- Gitea MCP server
|
||||
- Docker Swarm MCP server
|
||||
- Kubernetes MCP server (if applicable)
|
||||
|
||||
**Deliverables:**
|
||||
- Models accessing corporate systems
|
||||
- Read-only access verified
|
||||
- Security controls tested
|
||||
|
||||
### Phase 4: RAG Implementation (Weeks 7-8)
|
||||
|
||||
**Knowledge base setup:**
|
||||
- Qdrant deployment
|
||||
- Embedding service
|
||||
- Initial document indexing
|
||||
|
||||
**Deliverables:**
|
||||
- Vector DB operational
|
||||
- Initial corpus indexed
|
||||
- Search quality validated
|
||||
|
||||
### Phase 5: Production Readiness (Weeks 9-10)
|
||||
|
||||
**Finalization:**
|
||||
- Authentication integration
|
||||
- Monitoring dashboards
|
||||
- Backup automation
|
||||
- Documentation
|
||||
|
||||
**Deliverables:**
|
||||
- Production-ready system
|
||||
- Team training completed
|
||||
- Operational runbooks
|
||||
- Go-live approval
|
||||
|
||||
### Phase 6: Rollout (Week 11-12)
|
||||
|
||||
**Gradual adoption:**
|
||||
- Pilot group (2-3 users)
|
||||
- Feedback collection
|
||||
- Issue resolution
|
||||
- Full team rollout
|
||||
|
||||
---
|
||||
|
||||
## Operational Excellence
|
||||
|
||||
### Daily Operations
|
||||
|
||||
**Health checks:**
|
||||
- Morning review dashboards
|
||||
- Check overnight alerts
|
||||
- Verify backup success
|
||||
- Monitor disk usage
|
||||
|
||||
**User support:**
|
||||
- Answer questions in Slack
|
||||
- Collect feedback
|
||||
- Document common issues
|
||||
|
||||
### Weekly Tasks
|
||||
|
||||
**Performance review:**
|
||||
- Analyze usage trends
|
||||
- Review slow queries
|
||||
- Check error patterns
|
||||
- Optimize as needed
|
||||
|
||||
**Content updates:**
|
||||
- Reindex modified documents
|
||||
- Update code snippets
|
||||
- Refresh runbooks
|
||||
|
||||
**Capacity planning:**
|
||||
- Review storage trends
|
||||
- Analyze GPU utilization
|
||||
- Forecast growth
|
||||
|
||||
### Monthly Tasks
|
||||
|
||||
**Security review:**
|
||||
- Audit logs analysis
|
||||
- Access patterns review
|
||||
- Update firewall rules
|
||||
- Vulnerability scanning
|
||||
|
||||
**System maintenance:**
|
||||
- OS updates
|
||||
- Driver updates
|
||||
- Dependency updates
|
||||
- Performance tuning
|
||||
|
||||
**Reporting:**
|
||||
- Usage statistics
|
||||
- ROI tracking
|
||||
- User satisfaction
|
||||
- Improvement recommendations
|
||||
|
||||
### Quarterly Tasks
|
||||
|
||||
**Major upgrades:**
|
||||
- Model updates
|
||||
- Infrastructure upgrades
|
||||
- Feature additions
|
||||
|
||||
**Strategy review:**
|
||||
- Roadmap adjustment
|
||||
- Budget review
|
||||
- Team expansion planning
|
||||
|
||||
**Training:**
|
||||
- Advanced features training
|
||||
- New team members onboarding
|
||||
- Best practices sharing
|
||||
|
||||
---
|
||||
|
||||
## Best Practices
|
||||
|
||||
@@ -1366,103 +646,6 @@ Payback Period: 18,350 / 218,400 = 0.08 года = 1 месяц
|
||||
4. **Test backups** regularly
|
||||
5. **Plan for growth** from day one
|
||||
|
||||
---
|
||||
|
||||
## Troubleshooting Guide
|
||||
|
||||
### GPU Issues
|
||||
|
||||
**Symptom:** Model loading fails
|
||||
**Causes:**
|
||||
- Insufficient VRAM
|
||||
- Driver issues
|
||||
- Cooling problems
|
||||
|
||||
**Resolution:**
|
||||
1. Check nvidia-smi output
|
||||
2. Verify model size vs VRAM
|
||||
3. Update drivers if needed
|
||||
4. Check temperatures
|
||||
|
||||
**Symptom:** Slow inference
|
||||
**Causes:**
|
||||
- GPU throttling due to heat
|
||||
- CPU bottleneck
|
||||
- Insufficient RAM
|
||||
|
||||
**Resolution:**
|
||||
1. Monitor GPU temperature
|
||||
2. Check cooling system
|
||||
3. Verify CPU usage
|
||||
4. Check RAM availability
|
||||
|
||||
### MCP Service Issues
|
||||
|
||||
**Symptom:** MCP timeouts
|
||||
**Causes:**
|
||||
- Backend system slow/down
|
||||
- Network issues
|
||||
- Rate limiting
|
||||
|
||||
**Resolution:**
|
||||
1. Check backend system health
|
||||
2. Verify network connectivity
|
||||
3. Review rate limit settings
|
||||
4. Check MCP logs
|
||||
|
||||
**Symptom:** Incorrect data returned
|
||||
**Causes:**
|
||||
- Cache staleness
|
||||
- Backend API changes
|
||||
- Parsing errors
|
||||
|
||||
**Resolution:**
|
||||
1. Clear MCP cache
|
||||
2. Verify backend API format
|
||||
3. Check MCP server logs
|
||||
4. Update parsers if needed
|
||||
|
||||
### RAG Issues
|
||||
|
||||
**Symptom:** Poor search quality
|
||||
**Causes:**
|
||||
- Outdated index
|
||||
- Poor chunk strategy
|
||||
- Embedding model issues
|
||||
|
||||
**Resolution:**
|
||||
1. Trigger reindexing
|
||||
2. Review chunk configuration
|
||||
3. Test embedding service
|
||||
4. Analyze user feedback
|
||||
|
||||
**Symptom:** Slow searches
|
||||
**Causes:**
|
||||
- Index size too large
|
||||
- Insufficient resources
|
||||
- Network latency
|
||||
|
||||
**Resolution:**
|
||||
1. Optimize index parameters
|
||||
2. Add more RAM/storage
|
||||
3. Check Qdrant configuration
|
||||
4. Review network latency
|
||||
|
||||
### Storage Issues
|
||||
|
||||
**Symptom:** Disk full
|
||||
**Causes:**
|
||||
- Uncontrolled growth
|
||||
- Failed cleanup jobs
|
||||
- Backup accumulation
|
||||
|
||||
**Resolution:**
|
||||
1. Run cleanup scripts
|
||||
2. Archive old data
|
||||
3. Verify retention policies
|
||||
4. Plan capacity expansion
|
||||
|
||||
---
|
||||
|
||||
## Заключение
|
||||
|
||||
@@ -1480,29 +663,4 @@ Self-hosted AI-инфраструктура на базе Ollama с интегр
|
||||
|
||||
**История для контекста**. Persistent storage и intelligent management истории диалогов критичны для user experience и continuous improvement системы.
|
||||
|
||||
### Путь вперед
|
||||
|
||||
Развертывание такой инфраструктуры - не одноразовый проект, а начало journey continuous improvement. Система будет evolve вместе с:
|
||||
- Появлением новых, более мощных моделей
|
||||
- Расширением интеграций с корпоративными системами
|
||||
- Ростом knowledge base
|
||||
- Увеличением команды пользователей
|
||||
- Развитием best practices
|
||||
|
||||
### Следующие шаги
|
||||
|
||||
1. **Оценка готовности** вашей организации к внедрению
|
||||
2. **Планирование бюджета** и получение approvals
|
||||
3. **Формирование команды** для deployment и support
|
||||
4. **Pilot deployment** с small group пользователей
|
||||
5. **Iterative improvement** на основе feedback
|
||||
6. **Gradual rollout** ко всей команде
|
||||
|
||||
С правильной стратегией, инвестициями и commitment, self-hosted AI-инфраструктура становится мощным enabler productivity, качества работы и innovation в вашей организации.
|
||||
|
||||
---
|
||||
|
||||
**Версия документа:** 1.0
|
||||
**Дата:** Январь 2026
|
||||
**Автор:** Based on infrastructure requirements для k3s-gitops
|
||||
**Статус:** Comprehensive Guide
|
||||
Reference in New Issue
Block a user